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% Max-Planck-lnstitut fiir Physik und Asfrophysik, lnslilul fiir Astrophysik, Karl- 
Schwamchild-Straw 1, D-8046 Garching b. Miinchen, Federal Republic of Germany 
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AbslmcL We anmine lhe prolongalion s l ~ c t u r e ~  for a certain class of dilferenlial 
equations. Tlie interrelation hetween the incomplete set of mmmulator relations and 
the defining relations for Kac-Moody algebras is discussed. Constant meficient ideals are 
introduced for which Biicklund transformations are found in a purely algebraic manner. 

1. Introduction 

Applying the Mhlquist-Estabrook prolongation technique [I, 21 to nonlinear par- 
tial differential equations in two dimensions often leads to infinite-dimensional Kac- 
Moody algebras as prolongation algebras. In most cases one has to deduce the 
structure of the Lie algebra by introducing new generators for unknown commutators 
and going through the Jacobi identities. Repeating that procedure @y computer) 

experience whether one can identify the algebra. 
Nevertheless, we should mention that the investigation of the incomplete set 

of commutator relations with regard to automorphism which are due to Lie point 
symmetries of the corresponding first-order system of differential equations (isogroup) 
is hclpl'ul for dkcovering the algebra. 

In sections 2 and 3 we shall determine the prolongation structure of a certain 
class of differentid equations and show in the infinite-dimensional cases that the 
incomplete set of commutator relations is nothing but the delining relations for Kac- 
Moody algebras. Thus no further work on unveiling the structure of the algebra will 
be nccessaly. 

Using these prolongation structures we shall dkcusss in section 4 the correspond- 
ing constant coefficient (cc) ideals which admit transformations hetween apparently 
different equations by interchanging coordinate and potential. 

The subject of sectinn 5 will be the formulation of Backlund transformations in 
a purely algebraic manner. It will he seen that it has been advantageous for this 
purpose to introduce the conccpt of  Cc ideals. 

0305.4470/92/030601+22$04.50 @ 1992 IOP Publishing Ltd 601 

c=mmll:2!nr 5 !arge it then 2 q"estian of iq.lf"i!ion 2fiG 



602 

2. The class of differential equations 

We are considering equations of the form 

C Hofnselaers and W K SchieJ 

(1) 

which we call 'Harry . Dym . type .. equations' because a prominent member is the Harly 
Dym equation for k = 2 , n  = 3. Another well-known equation of this class is the 
case k = 3, n = 2; it arises in general relativity in the context of algebraically special 
radiative spacetimes, the so-called Robinson-Ttautman class, as a specialization to 
axisymmetric solutions. We shall not be concerned with the linear equation n = 0. 

The two-forms pertinent to equation (1) can be written as 

i = 0 , .  . . , k - 1 wi = dui d t  - ui+l d z d t  

wk = duo  d x  + 11'' d u b  d t  11" = 11, 

The ws pulled back to the solution manifold (x,t) and annulled give our original 
equation; wi = 0 are nothing hut the definition of the derivatives of U while wk = 0 
yields the equation. It is easy to see that the set of two-forms w is a closed differential 
idea:, i.e. ciw = U muu w. 

We now look for pseudopotentials y" and introduce one-forms 0" such that 

,. -..a 

R" =-dy"+ F"( l l i ry lP)dZ+C;"( l l i , yP)d l  (2) 

dR" = 0 niod (w ,na ) .  

and 

(3) 

From now on we suppress Greek indices on F and G and write Gi for the derivative 
of G with respect to 11;. In addition, we formally set G, := 0 for I' < 0 or T > k. 

Collecting terms in dx d t  respectively dui  d z  we get 

The commutator between I' and C; is taken with respcct to the ys only and is (up 
to the sign) the usual Lie bracket hetween vector fields. We now have to detcrmine 
the dependence of F and G on the 11;. First we note that 

and consequently 
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Thus we get, in general, 

G ~ - I , I  + Gk-l-i,1+1 = 0 I <  k / 2  

Gk+ = 0 i > 1. 

nmking the commutator of this equation with F we derive-note [Fo,  Gal = 0- 

~ k - l . l - l + ~ ~ ~ - I - l , l + ~ b - l - 2 , l + l  = o  

This is a linear algebraic system for Gk-l,l-l, 1 < k / 2 ,  whose determinant does not 
vanish. Consequently 

Gk-1,i-i = 0 1 < k / 2 .  (6) 

In particular this implies Gb- , , ,  = 0 and hence Gkoo = 0. Thus we find already 

F =  a X  + DEk + Y 

111 11, for n = 1 
a , p =  In11, - U 0 1  for n = 2 (7) { 1:"- n)-ll$n (1 - . ) - ' U ; - "  othewise 

where X, E ,  and Y are vector fields depending only on the pseudopotentials. Now 
we have 

and thus with (6) 

7 < I < 1. /*> 
I ~ " ~ .", -. c. " * - - ( , I - Z  . . - A -  I Gk- i - i , i - i  - n  ~ - 

This is again a linear algebraic system of equations giving Gb-l , l -2  in terms of 
Gk-2,0 .  From (8) it follows that 

2[F,G,_,,,l + q&>G,-2] - [F, c;k-3,]l = Ill(2c;,-2,00 - Gb-3,10) 

and thus Gk-2,00 = 0. From the explicit form of F and C ,  we can obtain G-, 
and Gb-2 through (8) and show that G,c-2,00 = 0 implies Gk-2,0 = 0. Thus 

G - I , , . . 2  = 0 .  

R.cpe.!isg !!lese .rg.mcats oac G!!I nOw Show !ha! G has !o h a w  thc k?!!nuring fer=: 
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X ,  B,, Z ,  and C depend only on the ys. For odd k X vanishes identically as can 
be seen from (5). Inserting F and G now into the commutator (4) and collecting 
terms in ui gives 

C Hoenselaers and W K Schief 

The equation containing it, terms gives 
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Before we resolve the special cases let us see what information can be extracted from 
(10)-(16). First we consider (13) and (14). It follows in general that 

[ B i , B l ] = O  i + l > k + 2 .  

(17) implies 

I zo = (-1) [B,-I>Bltll. 

This gives immediately 

k odd 3 Z, = 0. 

Moreover 

z, := [Y, Z,] = (- 

Summing this expression we get 

( ~ - q +  1)Zi = (-l)q[B,-q>BqI + (-l)PIB~-p-irBp+il  

and thus for y = ( k / 2  - 1) (taking k as even) 

( k / 2  - 1)Zi = (-1)'[B~-i,B,l. (23) 

It is now easy to dispose of the cases k = odd, n = 1 and n = 2. As has been noted 
already, X and Z, vanish identically for odd k .  Hcncc we have 

k odd :n = 2 : RI+,] = (-1)'Z" [Y, B,] = 
71 # 2 : z, = 0 

[., .] = 0 otherwise. 

There is the exceptional case k = 1, n = 2 .  Using z defined by d r  = 
(-1/u)dz + U ,  dt instead of T as coordinate one shows that the equation is in 
fact equivalent to the linear equation uL = 7~~~ and thus of no further interest to US. 

From now on k will be taken as wen. For n = 1 it follows from (18) and (23) 
that Z, = 0. Hence 

[Bk-i, Bi+l] = (-1) 'Zo 

[S, C] = -[Y, Bo] = L) 
[Y, Bi1 = Bi-1 

[., .] = 0 otherwise. 

Again using (23) we get for n = 2 

[E,-,, B,,,] = (-l) 'Z, [B,-l,B1] = ( -1 ) ' (k /2  - I)Zl 

[l', Bi1 = B1-i 

k # 2 * z, = 0. 

[I: Z,] = [A-, C] = [Y ,  C] = z, 
[ . , . ] = a  otherwise 
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Having found that the special cases for n give a finite dimensional prolongation 
algebra we shall consider n # 1 ,2 .  For k > 2 (21) implies 

C Hwtlselaers and W K Schief 

[BI,, Zol = 0 

and hence the special case n = 4 is relevant only for k = 2. However, this equation 
can be. linearized again by using r-dr = - ( l / u ) d z  + U ,  dl-as coordinate. 

In the general case it follows from (23) and (20) that 

k 1 
-Z ,  = [ E k ,  Bo] = -(Zl t (1 - n ) [ X , C ] )  2 n - 2  

and thus 

( $ ( n - z ) -  1 Z ,  = (1 - ~ ) [ x , c I  ) 
It can easily be shown that [X, C ]  commutes with all other generators and, as can 
be seen from the arguments given later, the algebra Will close. Hence the interesting 
case is 

(24) 
2 

n = 2 + -  
k '  

In what follows we shall assume n to have this particular value. Commuting Y with 
(23) gives 

[Y ,Z , ]  := Z2 

( k / 2  - 1)Z, = (-l)'([Bk-r-I, B h l  + [Rk-i, Bk-11) 

Summing this relation from zero to some d u e  of 1 and noting that a11 but one term 
on the right-hand-side cancel we get 

(25) 
I ; - 1  

( 1 +  1 ) ~ &  = ( -1) ' [Bk-f - l ,  

Now we repeat this procedure to get the commutator of 1' and 2,. We find, however, 

and thus if we let 1 = ( k p )  - 1, that I' and Z, have to commute. Therefore we 
conclude 

[ B i ,  RI] = 0 k -  2 < i +  I 4 k + 2 .  (26) 

The next commutators to he determined are those between the Bs and 2s. We find 
from (21) 

[Bi,ZoI - [ ~ ~ - ~ ~ [ ~ i ~ ~ i + i I I - [ ~ ~ + l ~ ~ ~ i ~ ~ ~ - ~ I I ~  
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The relation (26) gives 

(27) 
k k 

k - 3  < i < 2 + 2 , - - 3  < i < 2 
2 [ B ; , 2 , ] # 0  

and similarly 

(28) 

(29) 

k k 
2 2 

k k 
2 

IS,, Z,] # 0 

[Bi ,  2 2 1  # 0 

k - 2 < i < - + 3, - - 3 < i < 2 

k - 2 < i < + 3,  - - 2 < i < 3. 

For k > 6 these relations imply that all such commutatom vanish. For k = 6 we are 
left with i = 1,4; i = 1 , 5 ;  i = 2 ,4  respectively as non-vanishing commutators for 
the three 2s. Using the relation 

[Y,[Bi,zrlI =IBi-i,ZlI + [ B i , z , + i l  

they can also be shown to wnish and thus all Z commute with all B. We have 
determined all commutators for k 2 6 or T L  # 2 + ( 2 / k ) ;  to list them again: 

(S@-  2 ) -  1 2, = (1 -.)[X,C] 1 Z2 = 0.  11 # 2 + ( 2 / k )  : 

XI summarize: The only equations of the Harry Dym type which admit an infinite- 
dimensional prolongation algebra are, apart from the linear equations n = 0 and 
those which can be linearized, i.e. k = 1 , n  = 2 ; k  = 2 , n  = 3, the Harry Dym 
equation itself and the equation ut = u5/*urrsr2 [3]. 

2 

3. The algebrn 

In section 2 we saw that for k odd or k 2 6 or I t  # 2 + ( 2 / k )  either the corresponding 
differential equation is equivalent to a lincar equation or the algebra closes to a 
finite-dimeiisional nilpotent Lie algebra. Even though the widespread conjecture that 
a differential equation which admits only a finite-dimensional prolongation algebra 
does not possess a Backlund transformation is not true [4] we shall be dealing in the 
following only with the remaining cases k = 2, n, = 3 and k = 4 , n  = ( 5 / 2 ) .  

If we regard (14) and (17) as defining relations for the generators Bi ,  i = 
0, . . . , k - 1 all othcr commutator rclatioas can be summarized in the following way: 

(1) The generators A' and C: commute with all other gcnerators. 
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(2) The rest of the algebra is freely generated on the generators B,  and Y with 

(3) (adB,)3Y = 0 

Now we recall the defining relations for Kac-Moody algebras [5]  generated by 3n 

constraints 
(adY)3B, = 0 for k = 2 

(adB,)2Y = 0 (adY)'B, = 0 for k = 4. 

generators ej,  f j  and h i :  

[ h , , h j ]  = 0 [ei ,fj]  = 6, 13 .hi  

[ h i , e j ]  = aijej [hi,/,] = -a;;f, 

and the Serrt! relalions 

jadeij:-"o>ej = 0 (adf,j:-",jj. 3 = 0 (31) 

where A = 

twisted affine algebra 

,,,,, n--l is the generalized Canan mafrir. 
The only two-dimensional Cartan matrices with rank 1 correspond to the un- 

and the nvisted afhe algebra (T = 2) 

Thus if we identify B ,  with e, and Y with e, for k = '2, k = 4 we find that 
the prolongation algebra is a subalgebra of the Kac-Moody algebra Ai') and Ai') 
respectively (we forget about the Abelian generators X and C). 

tion) to a graded subalgebra of the loop algebra of the simple Lie algebra sl(2,R) 
(respectively SI( 3, R))  we find for k = 2: 

I_lrjng ax s,o-,o:pkisE A y )  (rerpec+e!y $.&hout rentre and dc*;& 

and for k = 4: 

} '= .y; 7 ' Q -  - y' 4 U, = .Y+ B ,  = Xt 
B2 = x: B ,  . = SA B4 = -;Xi (33) 

where Xi = X i  Ca A J  is an clement of the loop algebra sl(?,IR:) @ W(A, A- ' )  and 
X I , ,  . . , X+-:, r = 2 (rcspectivcly r = 3). is a certain basis of S I ( ? ,  R) (respectively 
sl(3,R)). A linear rcprcsentation of that particular basis from which onc can extract 
the structure constants will be given in section 5. 
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4. The CC ideal 

In section 5 we shall see that aside from other advantages it is convenient for getting 
mcklund transformations to write a differential equation (and therefore a whole 
class of differential equations!) as a constant CoeJficienf ideal (cc ideal) or inwarianl 
diferential sys’em originally expounded by Harrison 161 and Btahrook [7] respectively. 
Let us briefly recall what a cc ideal is. 

We are considering an (in general) infinite-dimensional Lie algebra 

[ X i , X j ]  = CkijXk 2 . .  I J  =constant. (34) 

The generators X i  are vector fields on an (in general) infinite-dimensional manifold 
with coordinates yn  (pseudopotentials). We have one-forms dual to the vectors and 
define two-forms by 

: = c k  - Ick..ci~I, 
2 ‘ I  

The two-forms w form a closed differential ideal, Le. d w  = 0 mod w,  because 
the structure constantS cbij satisfy the Jacobi identities. This guarantees that the 
equations w = 0 are integrable (Cartan’s calculus of exterior differential forms). 

The vector-valued one-form 

n := -dy + Xiti 
again has the property dC? = 0 m o d  ( n , w ) ,  i.e. the equations 0 = 0 are also 
integrable. 

For the purpose of obtaining differential equations from the system of two-forms, 
we have to set almost all one-forms ti to zero: 

t i = o  i$! J , J c Z ,  

Then the w system splits into two sets: 

pi := dCi - $ ~ ~ ~ ~ < j ( ~  for i E J 

U1 := c i j k < J t k  for i $! J. 

The integrability conditions d ( p ,  U )  = 0 mod ( p , u )  are still satisfied. 
The maximum dimension of an integral manifold of the ( p ,  U )  system is Cartan’s 

genus y. The one-forms ti can thus he written as linear combinations of g linearly 
independent one-forms qJ , j = 1 , .  . . , 9: 

. .  C‘ = a;?]’ i E J  

with functions aj depending on the coordinates of the integral manifold. 
The U forms have to vanish identically, whereas p = 0 gives first-order differential 

equations to be mmhined to one (or more) higher order equation. 
The linearly independent one-forms can he found by looking for exact one-forms 

within the p system to he used as wordinate differentials on the integral manifold. In 
case we find more than g exact one-forms, only g of them will he linearly independent 
and it is our choice which of them to use; the others will be differentials of potentials, 
This allows transformations between apparently different equations by interchanging 
coordinoie and polenrial. 
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4.1. The amne algebra A\') 

The non-vanishing one-forms dual to generators of A{ ' )  in which we are interested 
(cf (32)) are 

C Hoenselaers and W K Schief 

F' dual to Xi 
F 3  dual to X: 
t5  dual to X," 

E' dual to Xi 
c4 dual to X; 

Without going into the detailed calculations (cf, e.g., [SI on how this formalism works), 
we state that after solving the algebraic CT system of (35)  and finding exact one-forms 
to be used as coordinate differentials we obtain 

cl = -?. 2 t i  -2  d r + b d t  

(2  = -d:c 

( 3  = n d t  
<4 = L -1 2 1 L  llt 

t 5  = 11 llt 

with functions U ,  CL and B of the coordinates N and 1 (g = 2). 
Plugging them into the p system of (35) yields the differential equations 

7c1 = 1 1 ~ 6 ~  

n ,  = 6 
21= = CL 

and thus the Harry Dym equation 
exact one-form contained in the 1) system: 

= 1 ~ ~ 1 1 ~ ~ : ~ .  On the other hand. there is another 

(I: := t i - '  d x  - (116  - ; I , ' )  i l l .  

Using z instead of n: 
get the ntodified Korreweg-de Vn'es eqiralion in the form 

coordinate ( : E  becomes a potcntial) atid sctting '11 =: e9 we 

1 3  
Lp1 = Lpz2: - TLp, 

Thus we sce that the well-known correspondcnce benvcen the Harry Dym and 
the modified Korteweg-de Vries equation amounts to nothing but a different repre- 
sentation of the two-dimensional integral manifold of one Cc ideal. In that sense, all 
coordinates are on an equal footing. In section 5,  however, we shall see that only a 
certain pair of coordinates is invariant under a BScklund transformation. 
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4.2. The afine algebra AY' 

We are considering the following one-forms being dual to generators of AY) (cf (33)): 

F' dual to X i  
F4 dual to X: 
F7 dual to X a .  

F 2  dual to X i  
( 5  dual to Xi 

t3  dual to XA 

F6 dual to X,' 

The corresponding cc ideal reads 

d p  = 0 
de2 = 0 

a t 3  = -2('E= 

dF4 = ( ' ( 3  

q 5  = ~ 1 ~ 4  

d p  = F ' F 5  

< i t 7  = - 2 ~ 2 ~ 5  - ~ 3 f 4 .  

( ' ( 7  - 4 p . p  - ( 3 ( 5  = 0 
- 2 ~ 3 ~ 6  + 3 ~ 4 ~ 5  = o 

F 3 { 7  = 0 

F417 = 0 

< 5 ( 7  = 0 

E 6 € 7  = 0 

We solve the algebraic n system in a similar manner to that used previously and find 
the one-forms: 

I' = dx 

p = 1 -312 dz - iCclt 
J 11 2 

F 3  = c d t  

e 5  = n d t  

E4 = 6 d t  

t 6  = 71 d f  

C7 = i 7 ~ - ' / ~ d t .  

Inserting them into the p system and putting everything together gives 

which is (1) for k = 4 , 7 1  = L ' +  ( 2 / k )  = . 5 /2  and has already been found in 131. 
Again the p system admits another exact one-form 

d: := I l - i / z d : r  - ( i b 2  + 4 , 7 1  - + < l C )  

Using I to replace : I :  as wordinatc and setting 11  =: e-2v  it can he immediately 
concluded that 

(36) - 5v...vzz - 5vp,,,ipf - 5v:zvz + $0: 5 
9 1  = P 2 2 l d 2  I . _  

which is the integrated version of the pseudopotential equation Of the Sawada-Korcra 
equation and Kaup-Kuposctiniidl cquation [9]. 
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5. The Biicklund transformation 

In the last two decades the concept of Backlund ."formations has been successfully 
used for generating new solutions of physically interesting nonlinear partial differential 
equations from known ones. The sine-Gordon qualion, nonlinear Schrainger equation 
and Korfeweg-de Vries equation could be mentioned as prominent examples. 

An interesting discovely in 1979 [lo] was the N-fold BZcklund transformation for 
the equation governing axially symmetric stationary gravitational fields. The pssibility 
of deriving the Mcklund transformation in a purely algebraic manner was the main 
point of that article. In the following years Neugebauer, Kramer and Meinel applied 
this 'dressing' method to Einstein-MmeN fields in general relativity and the AKNS 
system [l l ,  121. 

We shall show below that one can generalize this method to BZcklund transfor- 
mations of cc ideals. 

Let G be a finite-dimensional Lie algebra 

C Hoenselaers and W K Schief 

S = s p a n { X j , i =  1 ,  ..., 7n) 

and X,, . . . ,g,, a corresponding fairhfu/, uacefree and linear representation. Let 
L(G)  be the loop algebra 

L ( G )  : = G @ R ( A , A - l ) .  

-I X i . ( X )  := Aixj is then a representation of the loop algebra L(G).  
Now consider the one-forms 

.$ dual to Xf - 1 < i < k 

for some integers - 1 ,  k E N. The integrability condition for the matrix-valued one- 
form 

n(A):= - d ( I ) ( X ) + X ~ ( A ) F { @ ( A )  (37) 

is again the vanishing of the CT ideal on the integral manifold. 

we construct a matrix 
How can we formulate a Bicklund transformation for this CT idcal? TJ this end 

$>(A)  := P ( A ) ( I ) ( A )  

such that d $ i ( A ) $ > - I ( A )  is a polynomial in A of degree I; and in A - '  of degree I 
and only consists of the matrices S,, . . . ,g,,,. Hence 

.y i ( A)( j  : = d $1 ( A )  6 -  ' ( A )  
--I 

is the BScklund transformation for the cc idcal. 

to r; = SI( n ,  K) with the 7 1 1  = n2 - 1 traccfrce matrices S,, . . . ,S,,, [13]: 
Now we can formulate thc 71 N-fold BJcklund tr:insfortnation of a CC ideal dual 
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Theorem 1. 

n r  '. 
P(A)  := X'Q, E R"," 

be determined by 

( i )  det  Q N  = constant # 0 

(ii) P ( X i ) Q ( X i ) v i  = 0 

for some constant 

. .  scalars X i  # X j  

vectors vi 

z , ~  = 1 , .  . . , n N , i  # j 
i = 1 , .  . . , n.N 

under the assumption 

clet @ ( X i )  # 0 i = 1 , .  . . , n N .  

Then the n N-fold Bgcklund transformation reads 

-1 S ' ( A ) i j  = P ( X ) ~ ~ . ( X ) P - ' ( X ) l i + d P ( X ) P - ' ( X )  V X #  X i  (38) 

by sorting with respect to the matrices xj and powers of A. 

Since every finite-dimensional Lie algebra is a matrix algebra we can regard every 
finite-dimensional Lie algebra as a subalgebra of a suitable sl(n,R). 7b be sure 
that the previously mentioned Backlund transformation only acts within a certain 

e.g. graded subalgebra) one bas to make further restrictions on the matrix P(X) and 
the constants X i  and U,. Sometimes it is therefore necessary to allow for double zeros 
X i .  One can easily show that theorem 1 also holds lor doublc zeros X i .  

Finally it has to be emphasized that (i) is only a technical condition simplifying 
the proof and (ii) is a linear algcbraic system of equations lor the coelficients of the 
matrices Q,,, which may be solved via Cramcr's rule. 

subaigebra (or within a ceriain subaigebfa of iiie hfinii&irlensionai z e  aigebia, 

Proof 1. The lollowing lemma helps us to simplify the calculations [14]: 

Lemma 1.  Let A ,  B E R"lTL and 11 E R". Then 

holds, where b is the adjoint of B, i.e. H E  = dct BL. 
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Tb remove all superfluous quantities we invest-igate the one-form R (respectively 

(37) therefore reads 
6) on the integral manifold 0 = 0 (respectively fi = 0). 

dQ(X) = X ( X ) 4 ~ ( X )  

with 

X ( X )  := $(X)F{. 

X(X) is a matrix-valued one-form and polynomial of degree k in X and degree 1 in 
A-]: 

X ( X )  E: P(k,1) .  

Let 

N 
& ( A )  := P ( X ) @ ( X )  := ~ X ” Q , @ ( X )  

?=O 

and 

6 ( X i ) V i  = 0 i =  1 ,  . . . ,  7zN. 

Hence it follows 

(let P(X, )  = 0 i = 1, ..., n R  
if det4,(Xi) # 0. From det P(X) being a polynomial of degrce nN in X we 
conclude 

n N 

detP(X) = d e t Q N n ( X - X i )  
:=I 

which assuming clet QN = constant implies 

d(det, P(X) )  = 0. 

With 
_ _  

T t ( d ( I ~ l I ) - ~ )  = d(h1 del,&) 

Tl.(di)li-l) = 0 

X $ X i  

we find 

because 0 = P S ( X )  = T t ( d ~ l ) ~ I ) - l )  = c l ( l u  del  [I)). 
Introducing thc tracefrcc matrix-valuctl one-form 

.?(A) := d i 4 ) - 1  for x # 
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we note that with 

c166-1 = pcla,lI)-'P-' + dPP-1 = P x ( X ) P - '  + d P P - 1  (39) 

for X # Xi it immediately follows 

d 6 &  = ( P X ( X ) P + d P P ) d c t @ .  

Since P(A) is a polynomial of degree N in X we derive from the definition of the 
adjoint: 

P ~ p ( ( n -  1 ) N , O )  

and hence 

8 ) & E T ( n N + k , l ) .  

Condition (ii) of theorem 1 gives 

d ( D ( X i ) t J i  = q X i ) c i  = 0 

because U, = constant, i = 1,. . . , ? I N ,  i.e. 

and that is why 

is regular at the zeros X = X i .  Hence 

k ( X )  = c l i ) ( i ) - 1  € T ( k , l )  

.v (X)  is therefore again il tr:icefrce matriwalued one-form and polynomial of degrce 
k in X and degrce 1 in A - I ,  i.e. therc arc one-forms such that 

,T(x)=.Y;;ri - 1 < i < k .  

Thus (39) yields the fiirmiila for thc B3cklund transformation QED 
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5.1. Applicalion IO A I ' )  

The one-form pertinent to the cc ideal (35) reads in the linear representation 

C Hoenselaers and W K Schief 

= -d@(A) + (AX2€' + X&C2 + A2XIC3 + X3X2C4 + X3&t5)@(X) .  (40) 

The crucial point is that the prolongation algebra is graded, i.e. the algebra only 
mnsists of generators 

XI c3 A2' x, c3 x 2 i - 1  x'3 @ x2'-' i > 1 .  

This leads to the equivalent statements 

S ( X )  has the form as in (40) 

and 

(0) X( A )  is a polynomial of third degree in X 
(Ill) x.(Oj = 0 

(iv) @(-A)  = Mis(X)C(X) 

with 

M = ( '  0 -1 O )  

and a constant matrix C depending only on X ((iv) is due to A'(-A] = M X ( A ) M ) .  
For the twiddled quantities 6 ( A )  = P(A)cI ) (X)  and * ( A )  = d ~ € ) ( X ) ~ ) - l ( A ) ,  (0) 

is satisfied by theorem 1 and (iii) (respectively (iv)) by 

(iii)' P(o) = constant 

(iv)' P ( - A )  = c , , M P ( A ) M  co = constant. 

DcRning 

and choosing zeros and vcctors 

A,,' := - Xi 
U&,+, : = C ' ( A i ) A 4 v i  i =  1 ,  . . . , A '  

(ii) gives 

f ( A i  ) (1) ( A; ) 1 ) ;  

P( - A;) AfdJ( X i )  11; i = I ,  . . . , 
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and thcrefore 

P( X N + i  1 MW Xi  )U; 

P(-X ,+ , )M(  M G ( X i ) U i )  i = I , .  . . , N .  

By means of lemma 1 we then find 

and since P ( - X ) M P ( X )  E P(ZN,O):  

P ( - X )  = R P ( X ) M  

for a matrix R, which is independent of A. 
This yields immediately 

Q N  = ( - l ) N R Q N M .  

'RI guarantee (iv)' and (i) we have to choose 
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which implies R = ( - l ) N M .  From (41) we conclude for Qo:  

for N even Q o =  (: cl:-l)  

Q" = ( c,:-l ;) for N odd 

c1 = constant, because det P ( 0 )  = (let  Q N  ( let  Qo = constant. 
Finally 

= - 111 q + constant 

solves the remaining equation (iii)'. 
From the highest power in (38) we now derive 

i" = e-2U~(4 

? = e -  'q' B 

from which follows 

@ = ~p - 2 111 q + Constant 

d t  = < I f .  
- 

Analogously, lower powcrs of X in (3s) detcrniine {I,? and E". One can cxpli- 
citly show that ( I f  = dz .  Hcnce it turns out that the coordinates or the modified 
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Korteweg-de Vries equation are invariant under the N-fold BBcklund transformation 
whereas the coordinate z of the Harry Dym equation k not. Its transformation can 
be read from 
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di: = C d z  + i ~ ( C 6 -  4ir')dt 

The concept of cc ideals circumvents the need of k ing  coordinates for the purpose of 
getting Bcklund transformations. On the contrary, later evaluation of the BBcklund 
transformation of the Cc ideal in terms of coordinates tells which coordinates are 
transformed and which are invariant-for lack of a better expression the latter may 
be called 'good' coordinates. 

Setting 

we finally get from (ii) the formula 

"=- 

q = -  

5.2. Application to AY' 

A linear and tracefree representation of sI(3, R) is given by 

X I =  0 - I  0 (1 : 1) 
& =  ( I  0 1 :) 

(: 1 1 )  
& =  (00 0 ;:3) 

0 0 - 2  

& =  0 0 - 1  

0 

- 3  0 

f ~ r  .N even 

for N odd. 
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the corresponding one-form by 

R = - a ~ ( X ) + ( X , 5 ' + X ~ 4 F 2 + X ~ 5 3 + X ~ 2 5 4 + X ~ ~ 6 E 5 + X X 7 5 6 + X Z ~ 4 F 7 ) Q ) ( X ) .  

(42) 

The symmetry 

XT(X) = - M X ( - X ) M  (43) 

iS again due to the gradation of the prolongation algebra A',"', where 

1 0  
A! = PI ; c\ 

\ o  0 I ) '  

A$ a consequence X(X) can be defined by 

(0) X( A )  is a polynomial of second degree in X 

(iii) X(X) does nor contain xy,g,X:,g 
(iv) t > T ( X ) b f ( ~ ( - ~ )  = c(x) 

Similarly as ffl 4.1 (iv) has to be satisfied by 

C(X) =constant ( A ) .  

GV)' P T ( X ) M P ( - \ )  = (det .P(,A)dPt >P( - -> , )> '~3M,  

Setting 

AN+i  := -xi 

U,; := 

?"? , .- .- I J ? ~ + ;  

.- - '2N+i '- 

i = I , .  . . , N 

with the restrictions 

(iv)" Q K A I Q N  = M 

(iv)"' 2 , y T C . T ( X i ) V i  = 0 i =  I .  ..., N 

again guarantees (iv)'. 
In terms of pscudopotential vectors 

U(&) := 0 ( A i ) U i  I . ( - & )  := (rl(-xi)uif .+Xi) := a) ( -X i )u%;  
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(iv)"' reads 
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rT(-A,)My(A,) = 0 

sT( -&)My( A,) = 0 i = 1,. . . , N 

which can be solved by (cf (43)) 

y(X,j := ivfi+Ai) x s(-Xij]. 

Without going into details (cf [13]) we state that 

e 4' 0 0  

Q N  = (;:?';* e," :) 
e-* = co(Qo) i i  

g = -c0( &o)31 c0 = constant 

satisfies (i) and (iii). 
Evaluation of (38) gives again 

,F" = e 2 + c 6  

i' = e-*p 
and therefore 

Gj=v-* 
dt = dt .  

- 

Moreover d I  = dr  as in 4.1. The remarks made at the end of 4.1 apply here as well. 
Finally the linear algebraic system (ii) has 

+ = -In 

as solution. 
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6. Remorks 

In the following a generalization of the methods given in the previous sections shall 
be mentioned. As already !mown the differential equations for axially symmetric Sta- 
tionary fields of general relativity (essentially the Ernst equation) can be written as a 
cc ideal. Application of the Whlquist-Estabrook technique [I, 21 does not only lead 

(11 to a loop algebra as prolongation algebra but the well-known semidirect sum of A, 
and the Vuasoro algebra. Moreover the N-fold Bcklund transformation of Neuge- 
bauer er a1 [ lo ]  admits a translation into the language of BBcklund transformations 
of CC ideals. 

How has a Backlund transformation of cc ideals to be formulated if we are 
dealing with the semidirect sum of a loop algebra L ( E )  = c8 W(X, A- ' )  and the 
Virasoro algebra? 

To this end iei us consider ihe commutator reiations 

[x:,x;"] = [ X i , X j ]  n+ln 

[D" ,X ,"]  = naX,!'+"' 

[ D " ,  D"] = ( ~ n  - n)D'"'" 

with Xi E g. 
Now we define the one-form 

Q ( X )  = -d@(X) - X"+'q,C),(X) f X " ' & ( ~ C ) ( X )  

where CI depends on X as before, whereas the one-forms IT,,  and <,, do not. 
It is easy to  verify that the integrability condition d Q  = 0 m o d  ( Q ,  Q,) rcsults 

in the vanishing of the cc ideal pcrtinent to the commutator relations above if we 
identify 

<;,, dual to X;" 

I ] , ,  dual to D".  

Then in order to get the desired Blcklund transformation one has to make the most 
general Ansatz 

N 

* ) (A)  = f ( x ) r ( X ) o ( X )  = f(X)CYQ,.'I)(X) 
r=0  

where f is a suitable function of X alone. 

will he published clsewhcre. 
We present no further analysis herc since applications, e.g. to Ernst's equation, 
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